Dual Molecular Mechanisms Govern Escape at Immunodominant HLA A2-Restricted HIV Epitope
نویسندگان
چکیده
Serial accumulation of mutations to fixation in the SLYNTVATL (SL9) immunodominant, HIV p17 Gag-derived, HLA A2-restricted cytotoxic T lymphocyte epitope produce the SLFNTIAVL triple mutant "ultimate" escape variant. These mutations in solvent-exposed residues are believed to interfere with TCR recognition, although confirmation has awaited structural verification. Here, we solved a TCR co-complex structure with SL9 and the triple escape mutant to determine the mechanism of immune escape in this eminent system. We show that, in contrast to prevailing hypotheses, the main TCR contact residue is 4N and the dominant mechanism of escape is not via lack of TCR engagement. Instead, mutation of solvent-exposed residues in the peptide destabilise the peptide-HLA and reduce peptide density at the cell surface. These results highlight the extraordinary lengths that HIV employs to evade detection by high-affinity TCRs with a broad peptide-binding footprint and necessitate re-evaluation of this exemplar model of HIV TCR escape.
منابع مشابه
Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response.
There is an association between expression of the MHC class I molecule HLA-B27 and protection following human infection with either HIV or HCV. In both cases, protection has been linked to HLA-B27 presentation of a single immunodominant viral peptide epitope to CD8+ T cells. If HIV mutates the HLA-B27-binding anchor of this epitope to escape the protective immune response, the result is a less-...
متن کاملRapid Antigen Processing and Presentation of a Protective and Immunodominant HLA-B*27-restricted Hepatitis C Virus-specific CD8+ T-cell Epitope
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, pr...
متن کاملCompensatory mutation partially restores fitness and delays reversion of escape mutation within the immunodominant HLA-B*5703-restricted Gag epitope in chronic human immunodeficiency virus type 1 infection.
HLA-B*5703 is associated with effective immune control in human immunodeficiency virus type 1 (HIV-1) infection. Here we describe an escape mutation within the immunodominant HLA-B*5703-restricted epitope in chronic HIV-1 infection, KAFSPEVIPMF (Gag 162-172), and demonstrate that this mutation reduces viral replicative capacity. Reversion of this mutation following transmission to HLA-B*5703-ne...
متن کاملT Cell Cross-Reactivity and Conformational Changes during TCR Engagement
All thymically selected T cells are inherently cross-reactive, yet many data indicate a fine specificity in antigen recognition, which enables virus escape from immune control by mutation in infections such as the human immunodeficiency virus (HIV). To address this paradox, we analyzed the fine specificity of T cells recognizing a human histocompatibility leukocyte antigen (HLA)-A2-restricted, ...
متن کاملStudy of antigen-processing steps reveals preferences explaining differential biological outcomes of two HLA-A2-restricted immunodominant epitopes from human immunodeficiency virus type 1.
Cytotoxic T-lymphocyte (CTL) responses directed to different human immunodeficiency virus (HIV) epitopes vary in their protective efficacy. In particular, HIV-infected cells are much more sensitive to lysis by anti-Gag/p17(77-85)/HLA-A2 than to that by anti-polymerase/RT(476-484)/HLA-A2 CTL, because of a higher density of p17(77-85) complexes. This report describes multiple processing steps fav...
متن کامل